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We develop the relativistic embedding method for electronic-structure studies. An expression for the transfer
matrix is derived in terms of the Green’s function of the Dirac equation, and we outline its evaluation within
the relativistic embedding framework. The transfer matrix is used to find the complex band structure and an
embedding potential that can replace a semi-infinite substrate in ab initio electronic-structure calculations. We
show that this embedding potential may be used to define an operator that gives the current flowing across a
surface; the eigenstates of which define channel functions for conductance studies, and which enable the
derivation of a relativistic generalization of the known expression for the conductance across a nanodevice
connected to leads. Finally, the application of the embedding potential in relativistic electronic-structure studies
is illustrated using an electronlike basis to solve the surface-embedded Dirac equation for Au�111�. A calcu-
lation with a single layer of atoms within the embedded volume correctly predicts the magnitude of the
Rashba-type splitting of the zone center surface state.
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I. INTRODUCTION

The embedding method of Inglesfield1,2 has developed
into a powerful tool for performing electronic-structure cal-
culations for extended systems that may be naturally divided
into two or more distinct regions. The key advantage of the
method is that it enables properties of the entire system to be
determined by finding explicit solutions only in a smaller
embedded region, with an additional surface operator, the
embedding potential, added to the Hamiltonian to ensure the
correct matching of wave functions on the surface separating
the embedded region from the rest. A particular class of
problems where the embedding method is especially useful
are semi-infinite systems such as surfaces and interfaces. For
example, in contrast to slab and supercell methods, which
require large numbers of layers to limit spurious interactions
between states localized on opposite surfaces,3 in embedding
calculations surface states, resonances and the bulk con-
tinuum are faithfully reproduced and easily distinguishable
even in calculations that include just a single surface layer.4

This can reduce computational demands. Furthermore, be-
cause the embedding potential furnishes the surface calcula-
tion with details of the bulk band structure, scattering prop-
erties needed for photoemission, or tunneling spectroscopy
calculations are correctly described, and Fermi surface ef-
fects such as surface resistivity can be studied.5 Exploiting
this, recent developments have extended the embedding ap-
proach to transport problems and field emission.6–10 The em-
bedding approach has also been applied to surfaces and in-
terfaces in strongly correlated materials.11

Most surface and transport calculations to date using the
embedding method have been performed using the scalar-
relativistic full potential linearized augmented plane wave
method �FLAPW�.4,6,7,12–14 Scalar-relativistic methods and
those based on the Schrödinger equation do not include the
spin-orbit interaction which is responsible for important ef-
fects in many systems, including significant energy shifts and
splitting in materials containing heavy elements, determining

the spin orientation in crystals �magnetocrystalline aniso-
tropy� and providing mechanisms for spin manipulation in
the field of spintronics. Recently an embedding scheme has
been developed that is based upon the Dirac equation15 and
which therefore naturally includes the spin-orbit interaction
as well as other relativistic effects. In that work the embed-
ding potential used was based upon the reflection matrix ob-
tained from a layer multiple-scattering calculation—an ap-
proach that is generally insufficient for complex and open
structures.

Here we describe how fully relativistic, full-potential em-
bedding calculations may be performed in the FLAPW
framework for both surface and transport problems. The de-
velopments are based upon the transfer matrix that describes
the relationship between boundary values of the solutions of
the Dirac equation across an embedded region and parallel
similar advances in the nonrelativistic framework.6,16 The
transfer matrix enables accurate embedding potentials to be
obtained for general systems, as well as providing the basis
for the calculation of the complex band structure, an impor-
tant concept in understanding states at surfaces and inter-
faces. We also derive a generalization of the expression for
the conductance across an interface in terms of the embed-
ding potential and the Green’s function.

The outline of our work is as follows. First, in Sec. II we
summarize the key ideas of the relativistic embedding
method and the basis set used in our calculations. In Sec. III
we derive an expression for the relativistic transfer matrix
and discuss the nonrelativistic limit. We illustrate how the
complex band structure may be obtained from the transfer
matrix and how the transfer matrix may use to determine an
embedding potential to replace a semi-infinite substrate. In
Sec. IV we discuss conductance within the embedding
framework, identifying surface-orthogonal channel functions
and using them to derive an expression for the transmission
through an interface in terms of the relativistic embedded
Green’s function and embedding potentials. Finally in Sec. V
we perform a demonstration fully relativistic surface
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electronic-structure calculation, using an embedding poten-
tial derived from the relativistic transfer matrix, reproducing
the known dispersion and spin-orbit splitting of the surface
state on Au�111� in a one layer calculation.

II. RELATIVISTIC EMBEDDING METHOD

In relativistic embedding problems we are interested in
understanding systems described by the single-particle Dirac
equation

�H − w�� = �c� · p + �mc2 + V − w�� = 0, �1�

where the Hamiltonian describes an extended system �re-
gions I+II� but the focus of our interest is a small region of
space, region I—see Fig. 1. Examples include investigating
surface or defect physics or transport properties across an
interface. It is also possible to study systems in which a
magnetic field is present—for clarity of presentation we only
consider the scalar potential in Eq. �1�.

Instead of solving Eq. �1� we solve the embedded Dirac
equation15

�H + HS − w�� = 0 �2�

in region I alone, where HS is a surface operator acting on S,
the surface dividing I and II, that ensures solutions of Eq. �2�
coincide with solutions of Eq. �1� inside region I

HS��r� = ic�� · n̂S�rS���r − rS�

� ��s�rS� − ic��
S

d2rS� · ��rS,rS�;w���l�rS��

0
� .

�3�

Here �l and �s refer to the upper and lower two-spinors that
make up the Dirac four-spinor �, which we refer to as the
large �l� and small �s� components on account of their typical
relative magnitudes for electron states. The position vector rS
is on S, and n̂S�rS� is the surface normal �from I to II� at rS.
�, which contains all information about region II, is the rela-
tivistic embedding potential. This 2�2 matrix function re-
lates the amplitudes of small and large components of ��w�,
the solution of the Dirac equation for region II at energy w,
on the surface S

�s�rS;w� = ic��
S

d2rS� · ��rS,rS�;w���l�rS�;w� . �4�

Solutions of Eq. �2� satisfy the Dirac equation in I, and also
satisfy Eq. �4� on S, thereby correctly matching on to solu-
tions in II. They therefore describe solutions of the Dirac
equation for I+II in region I.15

Basis

The embedded Dirac Eq. �2� is typically solved by ex-
panding � in a suitable basis set and solving the resulting
matrix problem. For extended systems it is usually advanta-
geous to actually solve for the corresponding Green’s func-
tion

�H + HS − w�G�r,r�;w� = − ��r − r�� . �5�

The choice of basis set is motivated by the need to efficiently
describe the spatial variations of the solutions and the bound-
ary values.8,12,13,17–19 In the present work where we use an
all-electron description and our focus is on relativistic sys-
tems with underlying two-dimensional translational symme-
try, we use a fully relativistic, electronlike linearized aug-
mented plane wave basis set20 �RLAPW� so that the wave
function is expanded in plane waves in the interstitial region
and atomiclike solutions in the atomic spheres. In the inter-
stitial region

�gn	�r� = � 
	

�k� · k+
	
�eik+·r � � 
	

�k� · k−
	
�eik−·r, �6�

where the � sign determines whether the z dependence of
the large component is sin-like or cos-like, as in correspond-
ing nonrelativistic implementations of the embedding
method.12,13,19 The wave vectors in Eq. �6� are k�=k�

+g�knẑ where k� is a wave vector in the two-dimensional
Brillouin zone, g is a two-dimensional reciprocal lattice vec-
tor, and the components in the ẑ direction are defined over
the interval 	0:L
, kn=2n /L. L is greater than the length of
the embedded region so that the basis functions have a range
of amplitudes on S �see Sec. V�. The 
	 are the usual Pauli
two-spinors and �k=c� / �Wk+mc2� with Wk=�c2�2k2+m2c4.
These basis functions are extended into the atomic sphere as
linear combinations of the radial solutions of the Dirac equa-
tion and their energy derivatives for the spherical component
of the atomic potential at that site, found at some pivot en-
ergy W�

�. In sphere � at R�

�gn	�r� = �
�

	Agn	
�� u�

��r�� + Bgn	
�� u̇�

��r��
 , �7�

where �= �� ,��, r�=r−R�, u̇=�u /�W, and

u�
��r� =  g�

��r���,��r̂�
if�

��r��−�,��r̂�
� �8�

with ��,��r̂� the usual linear combination of spherical har-
monics. The coefficients Agn	

�� and Bgn	
�� may be chosen by

matching amplitudes of large and small components at the
surface of the spheres, or alternatively by matching both am-
plitude and derivative of the large component. This “elec-

III

S

FIG. 1. Geometry for a general embedding problem. The region
of interest, region I, is separated from extended region II by surface
S.
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tronlike” basis prevents variational collapse21 to negative en-
ergy solutions of the Dirac equation while enabling an
accurate solution of Eq. �2� or Eq. �5� for layered systems.
The additional spin index in the basis functions means basis
sets used in this relativistic formulation are twice the size of
those used in conventional embedding studies.

III. TRANSFER MATRIX

The transfer matrix is a powerful tool in nonrelativistic
calculations, playing a key role in studies of complex band
structures,16 transport properties,6 and, of particular signifi-
cance here, in deriving embedding potentials for use in
electronic-structure calculations involving semi-infinite
substrates.13 In this section we show how the idea of the
transfer matrix can be implemented in a fully relativistic
framework.

To define the transfer matrix we consider a system in
which a region of space � extends infinitely in two dimen-
sions and is finite in one dimension, bounded by surfaces SL
and SR—see Fig. 2. The transfer matrix T� relates the am-
plitude of the wave function on SL, �L, to the amplitude on
SR, �R

�R = T��L. �9�

Starting from the Dirac equation, it can be shown15 that the
wave function at position r in � may be related to its ampli-
tude on the bounding surface through the Green’s function G

��r� = − ic��
S

d2rS · G�r,rS����rS� . �10�

Here S=SL�SR and the surface normal is out of �. This
result is independent of the boundary conditions satisfied by
G so choosing Gls to vanish on SL and SR gives

�Ll = FLR�Rs + FLL�Ls,

�Rl = FRR�Rs + FRL�Ls, �11�

where position vectors are suppressed and multiplication im-
plies integration over the appropriate surface. �Ll is the large
component of the wave function on SL, FLR=
−ic�Gll�rL ,rR��� · n̂R�rR�� etc. Note that in obtaining these re-
lations we allow r in II to approach the surface from within
�, establishing the distinct ordering when Green function
arguments rS and rS� are on the same surface. Rearranging Eq.

�11�, we may therefore construct the transfer matrix as

T� = �FRRFLR
−1 FRL − FRRFLR

−1FLL

FLR
−1 − FLR

−1FLL
� . �12�

The transfer matrix only involves the large-large component
of the Green’s function for region �. In the following section
we illustrate this for a problem that can be solved analyti-
cally. More generally we calculate T� with the embedding
formalism. In this case in Eq. �5� we put HS=HL+HR, and
then set to zero the left and right embedding potentials. This
variationally imposes the boundary condition that the small
component of the Green’s function vanishes on SL and SR
that was assumed in deriving the transfer-matrix expression.

At this point it is interesting to consider the nonrelativistic
limit of the transfer matrix in Eq. �12� by letting c→�. In
this limit the large component of the wave function reduces
to a nonrelativistic wave function �with appropriate Pauli
two-spinor� and the small component, being of order 1 /c,
vanishes. In general, Gll becomes the nonrelativistic Green’s
function and all other components vanish. It is clear that FLR
etc. are of order c and a nonrelativistic limit of these quan-
tities is ill defined. Regarding the transfer matrix, Tll and Tss
persist as c→�, Tsl is of order 1 /c and vanishes, while Tls,
which is order c, is ill defined. To regularize the limit we

introduce the transformation �̃S=CS�S, T̃�=CRT�CL
−1 with

CS�rS,rS�� = �1 0

0 i
w − v�rS� + mc2

c�
	S�rS� ���rS − rS�� .

�13�

The transfer matrix becomes as c→�

T̃� →� GRRGLR
−1 −

�2

2m
	GRL − GRRGLR

−1GLL


−
2m

�2 GLR
−1 − GLR

−1GLL
� , �14�

which is formally identical to the expression for the nonrel-
ativistic transfer matrix in terms of the Green’s function16

although here the entries are 2�2 quantities.
The reason we must make the transformation in Eq. �13�

in order to recover the nonrelativistic limit is as follows. The
Schrödinger equation is second order in space, meaning that
both the amplitude and first derivative of the wave function
must be specified on SL and SR to properly define a transfer
matrix. In contrast, the Dirac equation is first order in space
and only the amplitude of the wave function must be speci-
fied in the bounding surfaces. However, the small component
may be expressed in terms of the first derivative of the large
component but a prefactor which varies like 1 /c as c→�
means it vanishes and only the large component survives in
the limit. The transformation in Eq. �13� ensures that it per-
sists.

Despite the identical appearance of the c→� limit of T̃
and the nonrelativistic transfer matrix,16 there are significant
differences. In practice the 2�2 blocks in Eq. �14� are not
diagonal when the Green’s function is required to satisfy the

ΨL Ω

SL

ΨR

SR

FIG. 2. Geometry for a general definition of the transfer matrix,
T�, which relates the amplitude of a wave function on surface SL,
�L, to that on surface SR, �R.
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boundary conditions leading to Eq. �11�, and indeed the
transformation in Eq. �13� gives

�̃ = � �l

�nS
�l + i� · 	n̂S � ��l


� �15�

the second term in the lower component being an additional
term not present in the nonrelativistic theory.

A. Analytic example

An illustrative example which may be treated analytically
is a region � of constant potential v, between parallel planes
SL and SR at z=L and z=R respectively, with R−L=d. The
resulting transfer matrix can be used, e.g., to study scattering
by piecewise constant potentials.

Translational invariance parallel to the planes reduces the
problem to finding the wave-vector-resolved transfer matrix
T�,k�

. At energy w and wave-vector k� solutions of the Dirac
equation in � with zero-amplitude small component at z=0
are

�k�,	
�z� = � c���� · k� + 	zpz�

w − v − mc2 sin kzz
	

sin kzz
	

� , �16�

where kz=��w−v�2−m2c4−c2�2k�
2 /c�. From these, the

Green’s function which satisfies the zero-amplitude small
component boundary conditions on z=L and z=R may be
constructed by the direct method; for z�z�

Gk�,	
�z,z�� =

w − v − mc2

c2�2kzsin kz�R − L�
� �k�,	

�z − L��k�,	
� �z� − R�

�17�

with L and R in the wave function interchanged when z
�z�. Placing z� and then z on the surface planes from within
� one finds, e.g.,

FLL =
ic�

w − v − mc2 kz cot kzd − i�kx − iky�
− i�kx + iky� − kz cot kzd

� �18�

and eventually the transfer matrix

T�,k�
=�

cos kzd −
i�kx − iky�

kz
sin kzd

i�w − v + mc2�
c�kz

sin kzd 0

i�kx + iky�
kz

sin kzd cos kzd 0 −
i�w − v + mc2�

c�kz
sin kzd

i�w − v − mc2�
c�kz

sin kzd 0 cos kzd −
i�kx − iky�

kz
sin kzd

0 −
i�w − v − mc2�

c�kz
sin kzd

i�kx + iky�
kz

sin kzd cos kzd

� . �19�

The ll block, which is unaltered by the transformation

T→ T̃ introduced in the previous section and which therefore
survives unchanged in the c→� limit, is not diagonal, dem-
onstrating the difference with the nonrelativistic transfer ma-
trix obtained in Ref. 16. Only for k� =0, when the momentum
is parallel to the spin-quantization axis, do we recover an
identical form

T̃�,k�=0 = � cos kzd1 − kz
−1 sin kzd1

− kz sin kzd1 − cos kzd1
� . �20�

B. Complex band structure

Assume that region � in the transfer matrix problem is a
representative layer �containing one or more planes of atoms�
of a bulk crystal which has three-dimensional translational
symmetry. Such a layer can reproduce the bulk crystal by
repetition in directions normal �ẑ� to the layers with an asso-
ciated layer-layer translation vector d that reflects the trans-
lational periodicity of the solid and also takes surface SL to

SR—see Fig. 3. It follows that Bloch states of the crystal
satisfy

�R = eik·d�L �21�

and comparing with Eq. �9� we see that solutions of the
eigenvalue problem16

�
SL

d2rL�T��rL + d,rL����rL�� = ���rL� �22�

yields eigenvectors that are Bloch states on SL corresponding
to eigenvalues �=eik·d.

At real energies, eigenstates of T� with eigenvalues that
satisfy ���=1 have real wave vectors k that are part of the
conventional band structure of the solid. Those with kz�0
are right propagating Bloch states and those with kz�0 are
left propagating Bloch states. Alongside these solutions are
others for which ����1, corresponding to solutions with
complex wave vectors with imaginary values of kz. These
form the complex band structure. The associated wave func-
tions have an exponentially varying envelope, decaying to

M. JAMES AND S. CRAMPIN PHYSICAL REVIEW B 81, 155439 �2010�

155439-4



the left �right� if ����1 ��1�. Such evanescent waves do not
satisfy physical boundary conditions for an infinite bulk
crystal but may persist if this translational symmetry is bro-
ken, for example, by a surface or interface. In these situa-
tions screening confines modification of the potential to a
few layers close to the surface/interface, beyond which the
potential is bulklike and where the wave function may in-
clude contributions that decay into the crystal. Indeed in
band gaps there are no states with real k and it is the mag-
nitudes of the imaginary allowed kz that determine the decay
of localized states away from interfaces,22 and tunneling
across metal/insulator/metal junctions.23 In general the eva-
nescent Bloch states are essential for a complete description
of scattering. The transfer matrix given in Eq. �12� enables
the complex band structure to be determined accurately in
general systems when relativistic effects are significant.

As an example, for the analytic case studied in Sec. III A
it is straightforward to show that the four eigenvalues of
T�,k�

are the twofold degenerate pair ��=e�ikzd and that the
corresponding �unnormalized� eigenvectors may be chosen
to be

Uk�,	
� = � 
	

c�� · �k� � kzẑ�
w − v + mc2 
	� , �23�

which as expected describe the amplitudes on SL of Bloch
states with wave vector k� �kzẑ.

For realistic systems the complex band structure can be
obtained by diagonalizing the numerically determined trans-
fer matrix. To do so it is first necessary to identify the region
�, or equivalently the surfaces SL and SR. The nature of
electron wave functions �and Green’s functions� in solids is
such that it is not normally possible to identify suitable sur-
faces for this purpose that enable a numerical representation
that is both efficient and straightforward. A surface on which
the wave function is relatively smooth must weave between
atomic cores, complicating the identification of suitable sur-
face expansion functions while a planar surface that affords a
routine surface expansion will normally cut through cores
and require a large number of expansion functions to accu-
rately describe the rapid spatial variations.

Solutions to this problem involve transforming the prob-
lem on curvy surfaces SL ,SR to an equivalent problem stated

on planar surfaces.12,13,19,24 Here we adapt the approach of
Ref. 16 to the relativistic case. Buffer regions �L and �R are
introduced to either side of � as in Fig. 4 so that the new
volume ��=�L����R has planar surfaces PL and PR. A
subsidiary problem is introduced containing the space ��
=�L��R� , where �R� is region �R translated by −d. The po-
tential in the buffer regions is arbitrary but for practical pur-
poses is chosen to be smoothly varying, for example, a con-
stant or the smooth extension of the interstitial expansion
into these regions. The transfer matrices T�� and T�� are
found using Eq. �12� where the surface integrals that are now
required are taken over planar surfaces well removed from
atomic cores, which are straightforward to perform. In terms
of the transfer matrices for the individual regions we have

T�� = T�R
T�T�L

, T�� = T�R�
T�L

�24�

and one can show that

T = T��T��
−1 � T�R

T�T
�R�
−1 �25�

satisfies an eigenvalue equation similar to Eq. �22� but with
position vectors on PR� not SL, and with the same eigenvalues
asT�. Hence the complex band structure may be obtained by
constructing and diagonalizing T, which only involves ex-
pansions on, and integrals over, planar surfaces.

Using the RLAPW basis, contraction of the Green’s func-
tion expansions onto the planar surfaces leads to surface ex-
pansion in basis functions

���r�� =
1

�A
ei�g+k��·r�
	 �26�

at wave vector k�, where �= �g ,	� is a composite index and
the complex band structure is obtained from the explicit ei-
genvalue problem

�
��

eig·d�T������ = eikzdz��. �27�

Figure 5 shows results obtained for Au�111�. In this calcula-
tion the planes PL and PR �Fig. 4� have been placed 2.7 a.u.
to either side of the plane of atoms and the potential within
the buffer region is the continuous extension of the plane
wave expansion of the interstitial potential into these regions.
We use a basis set containing 19 g vectors. The real bands

d

Ω

SL SR

FIG. 3. �Color online� Geometry for calculating the transfer ma-
trix in the bulk. Adjacent layers are related by a translation d. The
transfer matrix connects states on surface SL across region � to
states on surface SR.

Ω

∆L ∆R

SL SRPL PR

∆L ∆′
R

PL SL P′
R

FIG. 4. �Color online� Geometry of embedding regions used in
practical embedding calculations. Left: buffer regions �L, �R ex-
tend � so that the combined region has planar bounding surfaces,
PL , PR. Right: the auxiliary problem involving regions �L and �R� ,
bounded by surfaces PL and PR� .
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are in excellent agreement with previous results and the com-
plex bands show their continuation into the complex plane.25

We see loops connect extrema of the real bands with �6
symmetry. One connects the L6− level near −7.6 eV with a
band minimum with kz�0.3�L and smaller loops connecting
extrema away from the high symmetry points are found cen-
tered on kz�0.5�L and 0.7�L. The L6− and L6+ levels below
and above EF are also connected by a complex band with
Re�kz�=L. In the �E ,kz� range show in Fig. 5 two loops con-
nect extrema of the real bands with extrema away from the
real k axis. The �4+5 band extrema at E=−5.3 eV is con-
nected to a minimum of the complex bands with E=
−3.0 eV and Re�kz�=�, and the �6 band extreme at E=
−5.4 eV connects with the complex band with E=−4.2 eV
and Re�kz�=�. Finally, we mention that Dal Corso et al.26

have recently reported a scheme for calculating relativistic
complex bands that employs two-component wave functions
and relativistic pseudopotentials—here the bands are found
from an all-electron four-component solution of the full
Dirac equation.

C. Embedding potential

Another application of the transfer matrix is to generate
the embedding potential for a semi-infinite bulk crystal, for
subsequent surface or interface studies. In Eq. �4� the embed-
ding potential at energy w relates the amplitudes on S of
small and large components of �, a solution of the Dirac
equation at energy w in II. If II corresponds to a semi-infinite
left substrate then � can be expressed as a linear combination
of outgoing Bloch states, i.e., either decaying to the left or
with kz�0. The surface values on SL of these Bloch states
are given by the eigenvectors of the transfer matrix and it
follows that the embedding potential may be found by invert-
ing a matrix of eigenvectors of the transfer matrix. An em-
bedding potential for a semi-infinite right substrate is simi-
larly obtained from the Bloch states that decay or carry flux
to the right.16

It is once again beneficial to work on planar surfaces. An
eigenstate � j of T in Eq. �25� is defined on surface PR� �Fig.
4� and is related to the eigenstate � j of T� with the same

eigenvalue by � j =T
�R�
−1

� j; hence � j =T��
−1

� j is the amplitude

on plane PL of the Bloch state � j back propagated from SL,
and can be used to derive an embedding potential for a left
substrate on the proviso that the buffer region is also in-
cluded in the subsequent embedded system calculation. Us-
ing surface expansion functions in Eq. �26� we obtain

���� =
i

c�
�

j

	�s
�j	�l
−1
 j��	z,	�	�, �28�

where 	�s
 is a matrix formed of the small components of
transferred eigenvectors � j corresponding to outgoing Bloch
states of the left substrate and 	�l

−1
 is the inverse of the
corresponding matrix of large components.

IV. CHANNEL FUNCTIONS AND TRANSPORT

The ability to handle extended substrates makes the em-
bedding scheme attractive for ballistic transport studies of
“nanodevices.” Embedding potentials may be used to replace
current carrying leads so that only the device region, region
� in Fig. 6, needs to be explicitly treated. Conduction
through the device region � results from electrons being
transmitted from open channels in the left-hand lead, through
� and into the open channels in the right hand lead. Calcu-
lations of the conduction therefore reduce to calculation of
the transmission probability between open channels in the
leads. Here we show how this can be found in the relativistic
formulation.

In relativistic theory the probability current JS carried
across surface S by state � is

JS = c�
S

d2rS · �†�rS����rS� . �29�

Expanding � into its large and small components, and using
Eq. �4� to replace �s, we obtain for the current

JS = c2��
S

d2rS�
S

d2rS��l
†�rS���rS,rS���l�rS�� , �30�

where

��rS,rS�� = i	S�rS�	��rS,rS�� − �†�rS�,rS�
	S�rS�� . �31�

Thus the current may be obtained from the large component
of the wave function and the embedding potential evaluated

Re(kz)
Γ

L

-2

2
-9

-6
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(k z
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F(
eV

)

FIG. 5. �Color online� Complex band structure for Au�111�
found from the transfer matrix evaluated at k� =0. Only the bands
with �Im�kz��� are shown.

SL SRφ χχ

Ω RL

FIG. 6. �Color online� Geometry for studying conductance
across a nanodevice in region �, connecting left �L� and right �R�
leads. SL and SR are dividing surfaces. In the left lead 
 describes a
state carrying current toward SL; this extends into �+R as �, in R
carrying current away from SR to the right.
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at the energy of the state �. Our convention for the surface
normals when embedding region � means that, when applied
to the geometry of Fig. 6, JS is the current flowing in the
direction into the left �right� lead when S is L �R�.

A. Channel functions

The eigenfunctions of �, which satisfy

�
S

d2rS��rS,rS��ui�rS�� = �iui�rS� �32�

can be used to define channel functions of the lead associated
with S. Since � is Hermitian, its eigenvalues ��i� are real and
its eigenfunctions �ui� may be chosen to be orthogonal over
S. The 2�2 nature of � means that the functions ui are 2
�1 spinors; we can identify these as the surface values of
the large components of an extended function �i, whose
small component on S may be found from the embedding
potential, Eq. �4�, and whose value within the lead may be
found from the Green function for the lead using Eq. �10�.
Thus ui fully determines a channel function �i. With ui nor-
malized over S it follows from Eqs. �30� and �32� that the
current across S associated with channel function �i is Ji
=c2��i, and hence �i�0 as a result of the outgoing bound-
ary conditions implicit in the embedding potential. Nonzero
�i correspond to current-carrying or open channels and zero
eigenvalues correspond to closed channels �evanescent �i�.
Expanding � in terms of its eigenfunctions, we then have

��rS,rS�� = �
i

�iui�rS�ui
†�rS�� , �33�

where the sum need only be taken over open channels.
Figure 7 shows the eigenvalues of � at k� = �0,0� for a

semi-infinite Au�001� substrate, alongside the conventional
band structure. In this calculation the embedding plane is
positioned midway between atomic planes.

Bloch states, which are commonly used as channel func-
tions in conductance studies are orthogonal functions within
the volume of the lead but not in general orthogonal on S; in
contrast, the embedding channel functions are orthogonal on
S but not in general in the volume of the leads. The surface
orthogonality of the embedding channel functions is attrac-

tive as this is precisely where the channel functions are re-
quired in calculating the conductance and their orthogonality
provides new opportunity for interpreting how the nanode-
vice in � conducts between left and right leads.

B. Conductance

We now consider the conductance through a nanostructure
with device region � sandwiched between leads, as in Fig. 6.
An incoming state from the left lead L, 
, is transmitted
across � into outgoing states in the right lead R. These leads
will be replaced by embedding potentials acting on SL and
SR, respectively, and the problem will be solved in � alone.

The embedding potential introduced in Sec. II relates
small and large components of outgoing states, being evalu-
ated at energy w+ i�, where � is a positive infinitesimal. In
the conductance problem we have an incoming state 
 in the
left lead, which is a time-reversed outgoing state. In relativ-

istic theory the time reversal operator is K̂=−i	y
�4�K̂0 where

K̂0 is the complex conjugation operator27 so that 
= K̂�
where � is an outgoing state. Using Eq. �10� this enables us
to express the large component of the wave function in �
+R in terms of the large-large component of the Green’s
function and � for the left lead

�l�r� = ic2�2�
SL

d2rL�
SL

d2rL�Gll�r,rL� � K̂�L�rL,rL��K̂†
l�rL�� .

�34�

We now assume that the incoming state corresponds to an
open channel function of the left lead, KuL,i, and expand the
transmitted state on SR as a sum over channel functions of
the right lead, �l�rR�=� jtijuR,j�rR�, where tij is a transmission
coefficient. If now the channel functions are normalized to
carry unit current �c2��i�Sd2rS�uS,i�rS��2=1� then

tij = ic4�3�i� j�
SL

d2rL�
SR

d2rRuj
†�rR� � Gll�rR,rL�vi�rL� .

�35�

The current through the device region is proportional to
the transmission probability Tij = �tij�2 summed over all open
channels, where each channel function carries the same flux
as may be shown by demonstrating a unitary transformation
relates them to the corresponding set of Bloch states.9 Mak-
ing use of the property of the time-reversed Green’s function,

K̂G�r ,r��K̂†=G†�r� ,r�, along with Eq. �32�, we find that the
transmission is given by

�
ij

Tij = �c2�2�2Tr K̂�LGLRK̂†�RGRL, �36�

where position arguments have been suppressed for brevity
and where the trace is taken over both spin and position
variables. Transmission through the device region, �, may
therefore be determined fully relativistically, using the large-
large part of the Green’s function calculated only in �
�which may be found via embedding�, and the embedding
potentials for the leads. This result generalizes corresponding
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Γ X
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F
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k⊥

5 10 15 20
λi [a.u.]

FIG. 7. Au�001� interface at k � =0. Left: band structure in the
�X direction; right: eigenvalues of �k�=0 evaluated on an embed-
ding plane midway between atomic planes.
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nonrelativistic expressions.6,9 The appearance of the time-
reversal operation in Eq. �36� may be explained by recogniz-
ing the Green’s function as a propagator. Beginning at the
right-hand side, ��rR� ,rR�Gll�rR ,rL� describes propagation
from SL to SR, the direction of the current and
��rL ,rL��Gll�rL� ,rR�� describes propagation from SR to SL but is
time reversed and so is also in the direction of the current.

V. EMBEDDED SURFACE CALCULATIONS

A class of problems to which the embedding method is
particularly well suited is calculation of the electronic struc-
ture of surfaces and we demonstrate here a relativistic sur-
face embedding calculation with Au�111�. We choose this
system because it has a well-characterized surface state28

which through a combination of the broken inversion sym-
metry at the surface and the relativistic spin-orbit interaction
exhibits a spin-split Rashba-type dispersion

E�k� � E0 +
�2�k � k0�2

2m�
. �37�

Furthermore, this state has particular properties that provide
a stringent test of the extent to which the embedding poten-
tial correctly reproduces the influence of an extended sub-
strate when added to the Hamiltonian of the surface region of
a crystal. First, it is known from previous studies �e.g., Ref.
29� that the Au�111� surface state extends a significant dis-
tance into the crystal, making it especially sensitive to the
crystal potential beneath the surface layers. An illustration of
this comes from the magnitude of the interaction seen in thin
film or periodic supercell calculations for Au�111�, where
surface states that form on one crystal face are sensitive to
the presence of the second, resulting in an energy splitting.3

find the magnitude of this is in excess of 500 meV for seven-
layer slabs and only becomes less that 10 meV for slab thick-
nesses greater than 23 layers. Second,30 have exploited the
fact that the dominant contribution to the spin-orbit interac-
tion originates from the potential in a small volume sur-
rounding each nucleus to decompose the spin-orbit splitting
into layer by layer contributions. They find only �58% of
the splitting may be attributed to the spin-orbit interaction in
the surface layer with successively deeper layers accounting
for 25%, 11% and 4%. Thus the subsurface region makes an
important contribution to the total relativistic effect on the
Au�111� surface state.

In our calculations we use an embedded region containing
the outermost or the three outermost atomic layers of the
surface. The semi-infinite substrate is incorporated via an
embedding potential that is found from the transfer matrix as
outlined in Sec. III C. This embedding potential provides a
formally exact replacement of the influence of the semi-
infinite substrate on the electron wave functions in the em-
bedded region.15 In the surface calculation, by calculating the
embedding potential from the transfer matrix there is made
the implicit assumption that the Hamiltonian for the substrate
is “bulklike” up to the embedding surface, i.e., the effective
potential is unchanged from that deep in the bulk. In metallic
systems screening is efficient so that for close-packed sur-
faces this condition holds to a sufficient degree even after

just one or two layers, whereas more would be required for
open surfaces or nonmetallic systems. The geometry is
shown in Fig. 8. The buffer region, �L, introduced when
transferring the bulk embedding potential �L from the curvy
surface SL to the plane PL, is also included as is required in
order to properly compensate and ensure that the Green’s
function in the surface region correctly matches to that in the
bulk. On the vacuum side the space beyond which the poten-
tial is assumed to be uniform �in our calculations chosen to
be �8 Å beyond the outermost atomic plane� is incorpo-
rated via another embedding potential, for which we use an
analytic expression. This is derived from Eq. �4� using for �
a general outgoing wave function for this constant potential.
This gives

�R�rS,rS�;w� =� d2k�

�2�2�k�
�w�eik�·�rS−rS�� �38�

with

�k�
�w� =

− i

w − vvac + mc2 kz�k�,w� − kx + iky

+ kx + iky kz�k�,w� � , �39�

where kz�k� ,w�=��w−vvac�2−m2c4−�2k�
2c2 /�c and vvac is

the vacuum level measured relative to the zero of energy.
Our attention is focused on the surface state near EF, for
which the constant vacuum potential beyond PR is a suitable
approximation. It is also possible to derive an analytic em-
bedding potential for an imagelike potential, which would be
necessary for studying relativistic effects on states nearer the
vacuum level.31

The embedded Green’s function at energy w, G�w�, is
found by solving Eq. �5� with surface Hamiltonian HS=HL
+HR, and where G is expanded in a double basis of
RLAPWs. From the Green’s function we obtain the local
density of states n�r ;w�=−−1 Im Tr G�r ,r ;w�, charge den-
sity, and other electronic properties. Self-consistent calcula-
tions are performed within the local density approximation
�LDA� to density-functional theory, using the Perdew-
Zunger parametrization of the exchange-correlation
potential.32 We assume an ideal unrelaxed structure with lat-
tice parameter 4.08 Å. Our basis sets contain interstitial
plane waves up to 220 eV, spin-angular functions within
atomic spheres �radii 1.395 Å� corresponding to �max=9.

← bulk vacuum →

∆L

0 PL SL PR L
z

FIG. 8. �Color online� The geometry for an embedded surface
calculation. Embedding potentials act on planes PL �substrate em-
bedding potential� and PR �vacuum embedding potential�; buffer
region �L extends from PL to SL, beyond which the actual surface
potential applies.
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The valence density is found by integrating the Green’s func-
tions around a semicircular contour extending from extend-
ing from just below the valence band up to the Fermi level,
evaluated using 31 Gauss-Chebyshev points, and using the

equivalent of 486 k points in the full two-dimensional Bril-
louin zone.33

In Fig. 9�a� we illustrate results obtained for the disper-
sion of the zone-center surface state found in a calculation in
which just the outermost layer of atoms is included in the
embedded region. The dispersion is obtained from calcula-
tions of the energy and wave-vector-resolved local density of
states, integrated over the surface region, and which is evalu-
ated with a small imaginary component in the energy to
broadens spectral features and aid their identification. The
surface state clearly exhibits the characteristic spin-orbit
splitting and is easily distinguished from bulk states and
resonances even in this one layer calculation as the embed-
ding potential ensures that the bulk continuum is faithfully
reproduced, Fig. 9�b�. Calculating the expectation value of
the spin operator in the surface state we find, in agreement
with both experiment29,34,35 and previous theoretical
calculations,29,31,35 that the electron spin vectors lie in the
surface plane and perpendicular to the electron momentum.

In Table I we compare the dispersion parameters and the
wave-vector splitting at the Fermi energy found in our cal-
culations 	Fig. 9�c�
 with those obtained in previous calcula-
tions and those observed in angle-resolved photoemission
experiments on Au�111� surfaces and a vicinal surface with
�111� terraces. The wave-vector splitting that we find agrees
well with previous calculated values and those from experi-

TABLE I. Compilation of theoretically determined Au�111� surface state dispersion parameters and re-
sults from angle-resolved photoelectron spectroscopy experiments. Some key calculation details are noted.
LDA and generalized gradient approximation �GGA� refer to different treatments of exchange-correlation
effects in the density-functional theory. FLAPW indicates the full-potential calculations using two-component
linearized augmented plane waves with variational inclusion of spin-orbit interaction. Further details may be
found in the cited articles.

E0

�eV� m� /me

kf

�Å−1�
�kf

�Å−1� Notes

Theory

−0.39 0.025 23 layer slab, LDA, FLAPW, Ref. 36

−0.50 0.23 0.023
Semi-infinite crystal, LDA+image barrier, atomic

sphere, Ref. 31

−0.51 0.20 �0.149, 0.172 0.023
Semi-infinite crystal, LDA, muffin-tin, Refs. 29

and 35

−0.484 0.22 0.031 23 layer slab, LDA, FLAPW, Ref. 3

−0.326 0.25 0.031 23 layer slab, GGA, FLAPW, Ref. 3

−0.52 0.24 �0.159, 0.191 0.032 24 layer slab, LDA, pseudopotential, Ref. 37

0.028 23 layer slab, FLAPW, Ref. 38

−0.52 0.25 �0.155, 0.184 0.029 1 embedded layer, LDA, RLAPW, this work

−0.52 0.25 �0.155, 0.184 0.029 3 embedded layer, LDA, RLAPW, this work

Experiment

−0.417 0.25 �0.153, 0.176 0.023 Ref. 28

−0.487 0.255 �0.172, 0.197 0.025 Ref. 36

−0.487 0.255 �0.167, 0.192 0.025 Ref. 39

−0.439 0.254 �0.157, 0.184 0.026 Au�23,23,21�, Ref. 40

−0.47 0.25 �0.160, 0.186 0.026 Ref. 35

−0.46 0.25 0.026 Ref. 34

−0.479 0.26 �0.172, 0.197 0.024 Ref. 3
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FIG. 9. �Color online� Results for the Au�111� surface state ob-
tained using the relativistic embedding method including a single
atomic layer within the embedded volume. �a� Intensity plot of the
local density of states �LDOS� n�E ,kx� for kx along �K, calculated
with Im E=10−4 Ha. The shaded area is the bulk continuum. �b�
LDOS for fixed kx=0.16 Å−1, showing the bulk continuum and
spin-orbit split surface state. �c� LDOS at E=EF showing the wave-
vector splitting of the surface state.
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ment, which are on average �10% lower than theory. Sig-
nificantly, an embedding calculation in which just the outer-
most surface layer is explicitly included in the embedded
volume yields the same surface state dispersion and spin-
orbit splitting as a calculation in which the three outermost
layers are included. Since over 40% of the splitting origi-
nates from relativistic interactions deeper that the surface
layer,30 this demonstrates that the relativistic embedding po-
tential correctly replicates the influence of the extended sub-
strate on states within the embedded region.

VI. SUMMARY

Inglesfield’s embedding method is a powerful tool for
electronic-structure studies in extended systems which may
be naturally divided into two or more distinct regions. In the
present work we have presented extensions to the embedding
method that enable practical calculations to be performed for
surface and interface systems when relativistic effects are
expected to be important. First, the concept of the transfer
matrix used in the nonrelativistic theory has been adapted to
match boundary values of solutions to the Dirac equation
across an embedded region. In contrast to the second order
nature of the Schrödinger equation, which means that the
conventional transfer matrix is defined in terms of an ampli-
tude and normal derivative on the surface, the Dirac equation
is first order and no normal derivative boundary condition
need be specified. Consequently the new transfer matrix in-
volves only the amplitude of the four component wave func-
tion on the surface. We have shown that as in the nonrelativ-
istic case the transfer matrix may be written in terms of
Green’s functions for the embedded region; by choosing
these to satisfy zero-amplitude small-component boundary
conditions a relatively simple form for the transfer matrix is
obtained that formally resembles the nonrelativistic version
but which generally differs in the c→� limit.

Application of the transfer matrix to the problem of find-
ing the complex band structure including relativistic effects
has been described and demonstrated; also the use of the

eigenvectors of the transfer matrix in constructing an embed-
ding potential that can replace semi-infinite substrates in sub-
sequent embedding calculations. The embedding potential, a
2�2 matrix function in the relativistic formulation, is also
shown to play an important role in formulating the transport
problem across an embedded region. It enables the identifi-
cation of channel functions that form an orthogonal set over
the embedding surface and which form a natural representa-
tion for determining transmission across interfaces. We have
used these channel functions to derive an expression for
transmission across an interface in terms of the Green’s func-
tion for the embedded region and the embedding potentials
in the leads. In deriving this, the more subtle nature of the
Dirac theory becomes apparent as time reversal of states is
not achieved by simple complex conjugation.

In the final section we have illustrated a relativistic sur-
face electronic-structure calculation within the full-potential
implementation of the embedding method. We have chosen
the well-studied Au�111� surface and presented the results of
calculations in which just the outermost or outer three layers
of atoms at Au�111� are explicitly included with the semi-
infinite substrate replaced by an embedding potential that has
been obtained from the Dirac transfer matrix and with the
semi-infinite vacuum replaced by an analytic embedding po-
tential. The surface state dispersion and spin-orbit splitting
that we obtain agree with those found in previous calcula-
tions and photoelectron spectroscopy measurements. Both
our one- and three-layer calculations give similar results, il-
lustrating the ability of the relativistic embedding potential to
correctly replicate the influence of an extended substrate, in-
cluding relativistic effects, on electronic states within the
embedded region.
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